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Zoonotic Viruses and Human Disease 

• Zoonotic emergence and potential pandemic 
viruses are increasing 

• Mechanisms of trans-species virus movement 
and adaptation are unknown 

• Delays in response to natural or intentional 
emergence can be devastating 

• New approaches are needed for rapid recovery 
and study of identified or predicted zoonotic 
precursor viruses 



Research Goals 

• To define mechanisms of trans-species 
movement of zoonotic viruses to humans 

• To develop broadly applicable 
approaches to attenuate and treat CoVs 
and other families of viruses.  



Jumping species – a high jump? 
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• Broad diversity across 
mammalian and avian species 

• Demonstrate trans-species 
capacity in lab and in nature 

• Source of multiple human 
viruses including SARS-CoV 

• Likely zoonotic origin  (Bats) 

• Evidence for frequent new 
human and zoonotic CoVs 

Coronaviruse
s 



Coronavirus Diseases 

MHV  mice  hepatitis, encephalitis 
TGEV   pigs  gastroenteritis, pneumonia 
BCoV  cattle  gastroenteritis, pneumonia 
CCoV  dogs  gastroenteritis 
FIPV  cats  peritonitis, enteritis 
AJ-CoV  cheetah  peritonitis 
IBV  chickens tracheitis, renal 
SW-1  beluga whale hepatitis 
BAT-CoV bats  asymptomatic? 
 
SARS-CoV Human  SARS 
NL63  Human  bronchiolitis, pneumonia 
HKU-1  Human  bronchiolitis, pneumonia 
HCoV-OC43 Human  colds, pneumonia,  
HCoV-229E Human  colds, pneumonia,   

 
Virus 
 

Host  Disease 
  



What was (is) SARS? 
• Severe Acute Respiratory Syndrome 

• A new  human coronavirus  (SARS-CoV)  

• Demonstrated potential for pandemic disease 

• November 2002 through July 2003.   

• > 8500 Cases, > 774 deaths,  32 countries 

• Confirmed coronavirus trans-species 
movement and severe human disease 



Where did SARS-CoV come from? 

• Direct transmission from animal reservoir? 

• Mutations in animal or human virus? 

• Recombination between different 
coronaviruses? 





Chinese horseshoe bat Masked Palm Civets Humans 

SARS Coronavirus Spillover 



Bats and SARS-CoV 
• SARS-CoV is most closely related to beta 

Bat-CoV, but the precise SARS-CoV 
precursor has not been found. 

• Bats have no apparent disease from CoVs 

• Bat-CoVs only recently been isolated in 
culture 

• Mechanisms of host-species switching and 
adaptation are not known 
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SARS is not SARS is not SARS 
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Becker et al., PNAS  2008 

ACE-2 is sufficient for infection of murine cells, 
but not mice.  
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Bat-SRBD-MA replicates in aged BALB/c 
mouse lungs but does not cause  Illness 

Graham 
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Studying the Trans-Species 
Movement of Bat Coronaviruses 

Consensus 
Bat-CoV 

Bat- 
CoV 

Bat- 
sRBD ACE2 

MA-
spike 

More Hurdles 



Bt-HKU9.2 

Bt-HKU9.1 

Bt-HKU9.3 

Bt-HKU9.4 

HCoV- 
HKU1 

MHV.A59 

PHEV.VW572 

HCoV-OC43 
BCoV 

IBV 
FCoV TGEV 

PRV 
Bt-HKU2.GD 

Bt-HKU2.HK:1-3 
HCoV-NL63 

HCoV-229E 

PEDV.CV777 

BtCoV .512.2005 

BtCoV .HKU8 

Bt-CoV .1B.AFCD307 

Bt-CoV .1A.AFCD62 

Bt-HKU4:1-3 
        
           

Bt-HKU4.4 Bt-COV .133.05 Bt-HKU5.1 
Bt-HKU5:2,3,5 

 SARS-CoV 
Bt-SARS.Rp3 

Bt-CoV .273.2005 
Bt-SARS.Rf1 

Bt-SARS-RM1 
Bt-CoV .279.2005   Bt-SARS- 

HKU3:1-3 

0.1 

β 
α 

γ 

SERCEB 
Denison/Baric 



Bt-HKU9.2 

Bt-HKU9.1 

Bt-HKU9.3 

Bt-HKU9.4 

HCoV- 
HKU1 

MHV.A59 

PHEV.VW572 

HCoV-OC43 
BCoV 

IBV 
FCoV TGEV 

PRV 
Bt-HKU2.GD 

Bt-HKU2.HK:1-3 
HCoV-NL63 

HCoV-229E 

PEDV.CV777 

BtCoV .512.2005 

BtCoV .HKU8 

Bt-CoV .1B.AFCD307 

Bt-CoV .1A.AFCD62 

Bt-HKU4:1-3 
        
           

Bt-HKU4.4 Bt-COV .133.05 Bt-HKU5.1 
Bt-HKU5:2,3,5 

 SARS-CoV 
Bt-SARS.Rp3 

Bt-CoV .273.2005 
Bt-SARS.Rf1 

Bt-SARS-RM1 
Bt-CoV .279.2005   Bt-SARS- 

HKU3:1-3 

0.1 

β 
α 

γ 

HCoV-EMC 
2012 



• A previously unknown coronavirus from the sputum of a 60-y/o 
man in Saudi Arabia 

• Acute pneumonia and renal failure with a fatal outcome 

• HCoV-EMC  replicated in cell culture, with CPE and syncytia.  

• Novel β coronavirus – closest relatives Bt-CoV HKU4 and HKU5.  

• The clinical picture was remarkably similar to SARS in 2003 

Ali Moh Zaki, Sander van Boheemen, Theo M. Bestebroer,  
Albert D.M.E. Osterhaus, and Ron A.M. Fouchier 

October 17, 2012, at NEJM.org.N Engl J Med 2012. DOI: 10.1056/NEJMoa1211721 



SARS: Still Relevant After all 
These Years 

Mark R. Denison M.D. 
Vanderbilt University School of Medicine 



Challenges Ahead 
• SARS-CoV on Select Agent List 

– How will this impact discovery, collaborations, 
new investigators? 

– What is real cost to investigators? 

– How will we be able to respond to new human 
CoVs that are “not circulating in humans”? 
(like EMC-2012) 

 



Advances at risk? 
• Why did public health interventions succeed? 
 

 



Why did SARS-CoV allow itself to be 
controlled? 

• Coordinated public health measures – Why did 
they work? 

• Why don’t they work with Influenza? With HIV? 
 



Principles of Epidemic Control 

Fraser C et al. PNAS 2004;101:6146-6151 

Influenza 

HIV 

S
m

al
lp

ox
 

S
A

R
S

 

R
0 =

 b
as

ic
 re

pr
od

uc
tio

n 
nu

m
be

r 

θ = proportion of transmission prior to 
symptoms or from asymtomatic infection 



Isolation 
only 

Quarantine 

Fraser C et al. PNAS 2004;101:6146-6151 

Influenza 

HIV 

S
m

al
lp

ox
 

S
A

R
S

 

Isolation of 100% of symptomatic individuals 

R
0 =

 b
as

ic
 re

pr
od

uc
tio

n 
nu

m
be

r 

θ = proportion of transmission prior to 
symptoms or from asymtomatic infection 
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Why did SARS-CoV allow itself to be 
controlled by interventions? 

• Toronto 2003 – biphasic epidemic: Epidemic -
control – relaxed isolation – recurrent epidemic – 
control and elimination 

•  China 2004 -  lab-associated infections – 
 “WHO commends the Chinese authorities for taking swift action 
to contain the latest outbreak once it was recognized and reported, by 
way of extensive contact tracing and the quarantine and medical 
observation of such individuals. Once again, it has been demonstrated 
that SARS is a containable disease.” (WHO health alert: 
http://www.who.int/csr/don/2004_05_18a/en/index.html)  

 

 



Why did SARS-CoV allow itself to be 
controlled by interventions? 

• Coordinated Public Health Measures – why did 
they work – who gets credit? 

• Why don’t they work with Influenza? With HIV? 
• SARS-Achilles Heel – low R0 low θ – controllable 

by isolation only 
• SARS may be uniquely sensitive to public health 

interventions – Other CoVs? 
•   
 

 



Advances at risk? 
• Busting Myths: Increased mutation rate is 

dangerous and leads to more virulent virus 
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ExoN- mutants have 20-fold increase in 
mutation frequency (mutator phenotype) 

Michelle Becker 

Eckerle et al., J Virol 2007 
Eckerle et al., PLoS Pathogens 2010 
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Wildtype CoVs have a 20-fold lower 
mutation rate than other RNA viruses! 

Michelle Becker 

Eckerle et al., J Virol 2007 
Eckerle et al., PLoS Pathogens 2010 
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SARS-CoV (ExoN+) and  
SARS-ExoN- mutants have similar replication 
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SARS-ExoN- is less fit than SARS-ExoN+ 
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SARS ExoN- is attenuated in an aged BALB/c 
mouse model of lethal SARS 
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• The ExoN- mutant genotype and mutator 
phenotype is stable in vitro and in animal infection. 

• ExoN- mutants are attenuated – and protect from 
lethal SARS-CoV challenge.  

• ExoN- mutants have not reverted to virulence. 

• ExoN- mutants are profoundly sensitive to RNA 
mutagens such as Ribavirin 

Summary 



• RNA viruses do not proofread 
• Increased mutation rate = increased 

virulence and transmission 
• Increased mutation rate enhances fitness 
• Mutator phenotype decreases safety of 

working with pathogen 
 

State of the Ideas –before 
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• Proofreading in SARS-CoV and other CoVs 
• Increasing mutation rate impairs virus replication, 

attenuates, blocks virus ability to restore virulence, 
and protects. 

• Potential attenuation of any known or emerging 
coronavirus by the same exact mutations. 

• Increased safety of ExoN- attenuated vaccines- 
sensitivity to RNA mutagens. 

New State of the Ideas 
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